Advertisement

This self-healing material could solve many wearable woes

The experimental electronics material works in high humidity and even after being cut in half - once it heals itself.

The physical limitations of existing materials are one of main problems when it comes to flexible electronics, be it wearables, medical or sports tech. If a flexible material breaks, it either stays broken, or if it has some self-healing properties it may continue to work, but not so well. However, a team from Penn State have creating a self-healing, flexible material that could be used inside electronics even after multiple breaks.

The main challenge facing researchers led by Professor Qing Wang, was ensuring that self-healing electronics could restore "a suite of functions". The example used explains how a component may still retain electrical resistance, but lose the ability to conduct heat, risking overheating in a hypothetical wearable, which is never good. The nano-composite material they came up with was mechanically strong, resistant against electronic surges, thermal conductivity and whilst packing insulating properties. Despite being cut it in half, reconnecting the two parts together and healing at a higher temperature almost completely heals where the cut was made. The thin strip of material could also hold up to 200 grams of weight after recovering.

Unlike other healable materials, the boron-nitrate nanosheets the Penn State team used are unaffected by moisture, meaning it could also be used in high humidity environments like the shower. "This is the first time that a self-healable material has been created that can restore multiple properties over multiple breaks, and we see this being useful across many applications," said Qing Wang. "We need conducting elements in circuits but we also need insulation and protection for microelectronics."